본문 바로가기
알고리즘

[알고리즘] DFS & BFS (2)

by 딩박사 2023. 2. 8.
반응형

* 본 포스팅은 나동빈 - 이코테 2021 강의 몰아보기 에서 학습한 내용을 포스팅합니다.


출처

동빈나 이코테

 

 

■ DFS(Depth-First Search)

● 깊이 우선 탐색이라고도 부르며 그래프에서 깊은 부분을 우선적으로 탐색하는 알고리즘

● 스택 자료구조(혹은 재귀 함수)를 이용하여, 구체적인 동작 과정은 다음과 같다

    ① 탐색 시작 노드를 스택에 삽입하고 방문 처리를 한다

    ② 스택의 최상단 노드에 방문하지 않은 인접한 노드가 하나라도 있으면 그 노드를 스택에 넣고 방문 처리한다.

        방문하지 않은 인접 노드가 없으면 스택에서 최상단 노드를 꺼낸다.

    ③ 더 이상 2번의 과정을 수행할 수 없을 때까지 반복

 

 

# DFS 메서드 정의
def dfs(graph, v, visited):
	# 현재 노드를 방문 처리
    visited[v] = True
    print(v, end=' ')
    # 현재 노드와 연결된 다른 노드를 재귀적으로 방문
    for i in graph[v]:
    	if not visited[i]:
        	dfs(graph, i, visited)
            
# 각 노드가 연결된 정보를 표현 (2차원 리스트)
graph = [
	[],
    [2, 3, 8],
    [1, 7],
    [1, 4, 5],
    [3, 5],
    [3, 4],
    [7],
    [2, 6, 8],
    [1, 7]
]

# 각 노드가 방문된 정보를 표현 (1차원 리스트)
visited = [False] * 9

# 정의된 DFS 함수 호출
dfs(graph, 1, visited)

그래프 문제가 출제되면 노드가 1번부터 시작되는 경우가 많기 때문에 index 0에 대한 내용은 비워둔다.

왜냐하면 노드가 0부터 시작하지 않기 때문!

그리고 index 0은 사용하지 않기 때문에 일부러 * 9를 해준다

 


 

■ BFS(Breadth-First Search)

● 너비우선 탐색이라고도 부르며, 그래프에서 가까운 노드부터 우선적으로 탐색하는 알고리즘

● 큐 자료구조를 이용하며, 구체적인 동작은 다음과 같다

    ① 탐색 시작 노드를 삽입하고 방문 처리를 한다.

    ② 큐에서 노드를 꺼낸 뒤에 해당 노드의 인접 노드 중에서 방문하지 않은 노드를 모두 큐에 삽입하고 방문 처리한다.

    ③ 더 이상 2번의 과정을 수행할 수 없을 때까지 반복

 

 

from collections import deque

# BFS 메서드 정의
def bfs(graph, start, visited):
    # 큐(Queue) 구현을 위해 deque 라이브러리 사용
    queue = deque([start])
    # 현재 노드를 방문 처리
    visited[start] = True
    # 큐가 빌 때까지 반복
    while queue:
        # 큐에서 하나의 원소를 뽑아 출력하기
        v = queue.popleft()
        print(v, end=' ')
        # 아직 방문하지 않은 인접한 원소들을 큐에 삽입
        for i in graph[v]:
            if not visited[i]:
                queue.append(i)
                visited[i] = True
                
                
# 각 노드가 연결된 정보를 표현 (2차원 리스트)
graph = [
    [],
    [2, 3, 8],
    [1, 7],
    [1, 4, 5],
    [3, 5],
    [3, 4],
    [7],
    [2, 6, 8],
    [1, 7]
]

# 각 노드가 방문된 정보를 표현 (1차원 리스트)
visited = [False] * 9

# 정의된 DFS 함수 호출
dfs(graph, 1, visited)

 


 

[문제] 음료수 얼려 먹기

N x M 크기의 얼음 틀이있다. 구멍이 뚫려 있는 부분은 0, 칸막이가 존재하는 부분은 1로 표시된다. 구멍이 뚫려있는 부분끼리 상, 하, 좌, 우로 붙어 있는 경우 서로 연결되어 있는 것으로 간주, 이때 얼음 틀의 모양이 주어졌을 때 생성되는 총아이스크림의 개수를 구하는 프로그램을 작성

 

 문제 해결 아이디어

DFS를 활용하는 알고리즘은 다음과 같다

1. 특정한 지점의 주변 상, 하, 좌, 우를 살표본 뒤에 주변 지점 중에서 값이 '0'이면서 아직 방문하지 않은 지점이 있다면 해당 지점을 방문

2. 방문한 지점에서 다시 상, 하, 좌, 우를 살펴보면서 방문을 진행하는 과정을 반복하면, 연결된 모든 지점을 방문할 수 있음

3. 모든 노드에 대하여 1 ~ 2번의 과정을 반복하며, 방문하지 않은 지점의 수를 카운트한다.

 

 

 답안 예시(Python)

# DFS로 특정 노드를 방문하고 연결된 모든 노드들도 방문
def dfs(x, y):
	# 주어진 범위를 벗어나는 경우에는 즉시 종료
    if x <= -1 or x >= n or y <= -1 or y >= m:
    	return False
    # 현재 노드를 아직 방문하지 않았다면
    if graph[x][y] == 0:
    	# 해당 노드 방문 처리
        graph[x][y] = 1
        # 상, 하, 좌, 우의 위치들도 모두 재귀적으로 호출
        dfs(x - 1, y)
        dfs(x, y - 1)
        dfs(x + 1, y)
        dfs(x, y + 1)
        return True
    return False
    
# N, M을 공백을 기준으로 구분하여 입력 받기
n, m = map(int, input().split())

# 2차원 리스트의 맵 정보 입력 받기
graph = []
for i in range(n):
	graph.append(list(map(int, input())))

# 모든 노드(위치)에 대하여 음료수 채우기
result = 0
for i in range(n):
	for j in range(m):
    	# 현재 위치에서 DFS 수행
        if dfs(i, j) == True:
        	result += 1
            
print(result) # 정답 출력

 


 

[문제] 미로 탈출

N x M크기의 직사각형 형태의 미로에 갇혀있다. 현재 위치는 (1, 1)이며 미로의 출구는 (N, M)의 위치에 존재하며 한 번에 한 칸씩 이동할 수 있다. 이때 괴물이 있는 부분은 0이므로, 괴물이 없는 부분은 1로 표시되어 있다. 미로는 반드시 탈출할 수 있는 형태로 제시된다.
이때 탈출하기 위해 움직여야 하는 최소 칸의 개수를 구하라, 칸을 셀 때는 시작 칸과 마지막 칸을 모두 포함하여 계산

 

 문제 해결 아이디어

BFS는 시작 지점에서 가까운 노드부터 차례대로 그래프의 모든 노드를 탐색

상, 하, 좌, 우로 연결된 모든 노드로의 거리가 1로 동일

      따라서 (1, 1) 지점부터 BFS를 수행하여 모든 노드의 최단 거리 값을 기록하면 해결할 수 있다.

 

 

 답안 예시(Python)

# BFS 소스코드 구현
def bfs(x, y):
    # 큐(Queue) 구현을 위해 deque 라이브러리 사용
    queue = deque()
    queue.append((x, y))
    # 큐가 빌 때까지 반복
    while queue:
    	x, y = queue.popleft()
        # 현재 위치에서 4가지 방향으로의 위치 확인
        for i in range(4):
            nx = x + dx[i]
            ny = y + dy[i]
            # 미로 찾기 공간을 벗어난 경우 무시
            if nx < 0 or nx >= n or ny < 0 or ny >= m:
            	continue
            # 벽인 경우 무시
            if graph[nx][ny] == 0:
            	continue
            # 해당 노드를 처음 방문하는 경우에만 최단 거리 기록
            if graph[nx][ny] == 1:
            	graph[nx][ny] = graph[x][y] + 1
                queue.append((nx, ny))
                
    # 가장 오른쪽 아래까지의 최단 거리 반환
    return graph[n - 1][m - 1]
    
from collections import deque

# N, M을 공백을 기준으로 구분하여 입력 받기
n, m = map(int, input().split())
# 2차원 리스트의 맵 정보 입력 받기
graph = []
for i in range(n):
	graph.append(list(map(int, input())))
    
# 이동할 네 가지 방향 정의(상, 하, 좌, 우)
dx = [-1, 1, 0, 0]
dy = [0, 0, -1, 1]

# BFS를 수행한 결과 출력
print(bfs(0, 0))
반응형

'알고리즘' 카테고리의 다른 글

[알고리즘] 정렬 (2)  (0) 2023.02.11
[알고리즘] 정렬 (1)  (0) 2023.02.11
[알고리즘] DFS & BFS (1)  (0) 2023.02.07
[알고리즘] 구현  (2) 2023.02.03
[알고리즘] 그리디  (0) 2023.02.02

댓글